Trends and Disparities in Mortality in Eastern North Carolina
Total Deaths, Premature Mortality and Deaths for Ten Leading Causes; 1990-2021

A Resource for Healthy Communities
Table of Contents

List of Figures .. iii

1. Introduction .. 1.1

2. Data Highlights .. 2.1

3. Methods, Interpretation, and References .. 3.1
 - Data Sources .. 3.1
 - Measures ... 3.1
 - Interpreting the Pie Charts ... 3.1
 - Interpreting the Trend Figures .. 3.2
 - Caveats about the Concepts of Race, Gender, and Geography .. 3.3
 - References ... 3.5

4. Current Disparities in Mortality by Geography, Race and Gender, and Race: Total and Five General Leading Causes of Death .. 4

5. Trends and Disparities in Mortality in ENC41: All Causes of Death and All Causes of Premature Mortality, 1990-2021 with Projections to 2030 .. 5
 - All Causes of Death .. 5.1
 - All Causes of Premature Mortality .. 5.7

 - Diseases of Heart ... 6.1
 - All Other Unintentional Injuries and Adverse Effects ... 6.7
 - Cerebrovascular Disease ... 6.13
 - Cancer - Trachea, Bronchus, Lung .. 6.19
 - Chronic Lower Respiratory Diseases .. 6.25
 - Diabetes Mellitus ... 6.31
 - Alzheimer’s Disease ... 6.37
 - Nephritis, Nephrotic Syndrome, and Nephrosis .. 6.43
 - Unintentional Motor Vehicle Injuries .. 6.49
 - Chronic Liver Disease and Cirrhosis .. 6.55

7. Trends and Disparities in Mortality in ENC41: Cancer - All Sites and HIV Disease, 1990-2021 ... 7
 - Cancer - All Sites ... 7.1
 - HIV Disease ... 7.7

8. Appendix .. 8
List of Figures

Figure 4.1 i. General leading causes of death for ENC41 (2021), NC (2021), and US (2021). Mortality rate per 100,000 population............. 4.1
Figure 4.1 ii. General leading causes of death for ENC41 (2021), NC (2021), and US (2021). Age-adjusted mortality rate per 100,000 population.. 4.2
Figure 4.2 i. General leading causes of death for ENC41 by race and gender, (2021). Mortality rate per 100,000 population............... 4.3
Figure 4.2 ii. General leading causes of death for ENC41 by race and gender, (2021). Age-adjusted mortality rate per 100,000 population.. 4.4
Figure 4.3 i. General leading causes of death for ENC41 by race, (2021). Mortality rate per 100,000 population.............................. 4.5
Figure 4.3 ii. General leading causes of death for ENC41 by race, (2021). Age-adjusted mortality rate per 100,000 population........ 4.6
Figure 5.1 i. All Causes of Death: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030............. 5.2
Figure 5.1 ii. All Causes of Death: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030................................. 5.3
Figure 5.1 iii. All Causes of Death: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030... 5.4
Figure 5.1 iv. All Causes of Death: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030........ 5.5
Figure 5.1 v. All Causes of Death: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030... 5.6
Figure 5.2 i. All Causes of Premature Mortality: Trends in premature mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030... 5.8
Figure 5.2 ii. All Causes of Premature Mortality: Trends in age-adjusted premature mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030................................. 5.9
Figure 5.2 iii. All Causes of Premature Mortality: Trends in age-adjusted premature mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030... 5.10
Figure 5.2 iv. All Causes of Premature Mortality: Trends in age-adjusted premature mortality rates by race for ENC41, 1990-2021 with projections to 2030... 5.11
Figure 5.2 v. All Causes of Premature Mortality: Measuring disparity in age-adjusted premature mortality rates by race for ENC41, 1990-2021 with projections to 2030... 5.12
Figure 6.1 i. Diseases of Heart: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030................................. 6.2
Figure 6.1 ii. Diseases of Heart: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030... 6.3
Figure 6.1 iii. Diseases of Heart: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030... 6.4
Figure 6.1 iv. Diseases of Heart: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030............. 5.5
Figure 6.1 v. Diseases of Heart: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030... 6.6
Figure 6.2 i. All Other Unintentional Injuries and Adverse Effects: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030... 6.8
Figure 6.2 ii. All Other Unintentional Injuries and Adverse Effects: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030... 6.9
Figure 6.2 iii. All Other Unintentional Injuries and Adverse Effects: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.10
Figure 6.2 iv. All Other Unintentional Injuries and Adverse Effects: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.11
Figure 6.2 v. All Other Unintentional Injuries and Adverse Effects: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.12
Figure 6.3 i. Cerebrovascular Disease: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.14
Figure 6.3 ii. Cerebrovascular Disease: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.15
Figure 6.3 iii. Cerebrovascular Disease: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.16
Figure 6.3 iv. Cerebrovascular Disease: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.17
Figure 6.3 v. Cerebrovascular Disease: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.18
Figure 6.4 i. Cancer - Trachea, Bronchus, Lung: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.20
Figure 6.4 ii. Cancer - Trachea, Bronchus, Lung: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.21
Figure 6.4 iii. Cancer - Trachea, Bronchus, Lung: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.22
Figure 6.4 iv. Cancer - Trachea, Bronchus, Lung: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.23
Figure 6.4 v. Cancer - Trachea, Bronchus, Lung: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.24
Figure 6.5 i. Chronic Lower Respiratory Diseases: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.26
Figure 6.5 ii. Chronic Lower Respiratory Diseases: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.27
Figure 6.5 iii. Chronic Lower Respiratory Diseases: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.28
Figure 6.5 iv. Chronic Lower Respiratory Diseases: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.29
Figure 6.5 v. Chronic Lower Respiratory Diseases: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.30
Figure 6.6 i. Diabetes Mellitus: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.32
Figure 6.6 ii. Diabetes Mellitus: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.33
Figure 6.6 iii. Diabetes Mellitus: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.34
Figure 6.6 iv. Diabetes Mellitus: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.35
Figure 6.6 v. Diabetes Mellitus: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.36
Figure 6.7 i. Alzheimer’s Disease: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.38
Figure 6.7 ii. Alzheimer’s Disease: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.39
Figure 6.7 iii. Alzheimer’s Disease: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.40
Figure 6.7 iv. Alzheimer’s Disease: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.41
Figure 6.7 v. Alzheimer’s Disease: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.42
Figure 6.8 i. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.44
Figure 6.8 ii. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.45
Figure 6.8 iii. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.46
Figure 6.8 iv. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.47
Figure 6.8 v. Nephritis, Nephrotic Syndrome, and Nephrosis: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.48
Figure 6.9 i. Unintentional Motor Vehicle Injuries: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.50
Figure 6.9 ii. Unintentional Motor Vehicle Injuries: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.51
Figure 6.9 iii. Unintentional Motor Vehicle Injuries: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.52
Figure 6.9 iv. Unintentional Motor Vehicle Injuries: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.53
Figure 6.9 v. Unintentional Motor Vehicle Injuries: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 .. 6.54
Figure 6.10 i. Chronic Liver Disease and Cirrhosis: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 .. 6.56
Figure 6.10 ii. Chronic Liver Disease and Cirrhosis: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 .. 6.57
Figure 6.10 iii. Chronic Liver Disease and Cirrhosis: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 .. 6.58
Figure 6.10 iv. Chronic Liver Disease and Cirrhosis: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 6.59
Figure 6.10 v. Chronic Liver Disease and Cirrhosis: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 6.60
Figure 7.1 i. Cancer - All Sites: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 ... 7.2
Figure 7.1 ii. Cancer - All Sites: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 ... 7.3
Figure 7.1 iii. Cancer - All Sites: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 ... 7.4
Figure 7.1 iv. Cancer - All Sites: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 7.5
Figure 7.1 v. Cancer - All Sites: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 7.6
Figure 7.2 i. HIV Disease: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030 ... 7.8
Figure 7.2 ii. HIV Disease: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030 ... 7.9
Figure 7.2 iii. HIV Disease: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030 ... 7.10
Figure 7.2 iv. HIV Disease: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 7.11
Figure 7.2 v. HIV Disease: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030 ... 7.12
1. Introduction

Health Indicators Series:
A Resource for Healthy Communities
March 2024

Health Indicators is a series of reports describing community health at the state, regional, and county level. These reports are intended to provide state policy makers, local health departments, hospitals, and community-based health planning groups with a wide range of information useful for diagnosing the health of Eastern North Carolina’s population and its local communities, evaluating the effectiveness of existing services, and envisioning and planning new interventions. The reports in this periodically published series can be used in conjunction with the County Health Data Book, State Center for Health Statistics, as part of the Community Health Assessment Process. Individual reports in ECU's Health Indicator Series are custom made for the counties of North Carolina. Reports in this series will describe trends in mortality, including premature mortality for all causes of death, mortality (crude) and age-adjusted mortality for leading causes of death, and measures of race disparities or inequalities in mortality rate.

Report Series #2 of the series focuses attention on two overarching goals—to increase the span and quality of life, and to eliminate health disparities. Using rate comparisons, this report describes the inequalities in mortality among Eastern North Carolina and other regions, and among four demographic groups. Premature mortality, the focus of Report Series #1, is included in the death from all causes section located at the beginning of this report. The measure used to quantify premature mortality is described in more detail in the Methods and Interpretations section.

This report describes the leading contributors to mortality, provides a geographic context, and examines trends and inequalities over a 32-year period (1990-2021), as well as the most recent 17-year period (2005 to 2021). The report begins with data highlights, provided as an introduction to the data, rather than a summary of it. Readers are encouraged to draw their own conclusions from the data and pose new questions suggested by what they see. The following section presents both the overall and five leading contributors to mortality for the state by race and gender. In this section, pie charts describe the relative contribution of each of five leading contributors to the overall, general rate. These charts also make regional and demographic comparisons. The next section charts recent trends and disparities in mortality and provides projections to the year 2030. These charts place Eastern North Carolina’s health status in a historical context and provide a glimpse into the future.
The region Eastern North Carolina is comprised of 41 counties located in the extreme east of North Carolina and approximates the coastal plain physiographic province of the state. It includes all counties east of I-95. This region is characterized by its rurality, poverty, and some of the highest mortality rates in the nation. The name of the region is abbreviated as ENC41 or ENC. The rest of North Carolina is the remaining 59 counties; abbreviated as RNC59 or RNC.
2. Data Highlights

Trends and Disparities in Mortality in Eastern North Carolina

The following highlights of mortality in the 41 counties of Eastern North Carolina (ENC41) describe current status and trends in the causes of death from major diseases and how they vary across different population groups. The graphs, charts, and tables paint a picture of the region’s health with a broad brush. The study of mortality in populations should include consideration of time and geographic space as well as underlying demographic, political-economic, and socio-cultural conditions. Readers are encouraged to think of these factors as they consider the data presented in this report, formulate their own questions about the causes of mortality, and think about strategies to reduce mortality in the population described.

Current Disparities in Mortality by Geography, Race, and Gender

In 2021, the age-adjusted mortality rate for Eastern North Carolina is 1,076 deaths per 100,000. This rate is 12% higher than the state rate. Within Eastern North Carolina, the non-White rate is 22% higher than the White rate. The non-White male rate is 29% higher than the rate for White males. The non-White female rate is 17% higher than the rate for White females.

All cause mortality and premature mortality both increased in 2021 due to the impact of COVID-19. The marked increased is evident in Figures 5.1 i-v and 5.2 i-v. In 2021 COVID-19 was directly responsible for 4151 deaths in ENC41, but may have also indirectly led to increased mortality from other causes such as heart disease and cerebrovascular disease due to delayed care because of the pandemic. Because COVID-19 is a new cause of death with no trend data available this report does not include charts for it. For a look at the 2020 impact of COVID-19 in eastern North Carolina readers may refer to the report, COVID-19 in Eastern North Carolina, which is available on this web page.

The five general leading causes of mortality in Eastern North Carolina (2021) are:

1. Disease of Heart
2. Cancer - All Sites
3. COVID-19
4. All Other Unintentional Injuries
5. Cerebrovascular Disease
Trends in Mortality from All Causes

- ENC’s all-cause mortality rate trend is increasing, and the yearly rate showed a large jump in 2020 and again in 2021. The ENC rate trend is 13% greater than RNC and 9% greater than NC. The ENC trend has increased 35% over the 17-year period.
- The age-adjusted all-cause mortality rate for ENC had been declining prior to 2020 but has now increased sharply. ENC’s trend is 8% greater than NC and 11% greater than RNC but the trendline is flat and not reliable.
- The rates increased for all groups in 2021. The trendlines are all flat and not reliable.
- Yearly rates for Whites and non-Whites increased in 2020 and 2021. The rate trends are not reliable.
- Racial disparity decreased in 2021, but the 17-year rate trend is flat and unreliable.

Trends in Premature Mortality from All Causes of Death

- ENC’s premature mortality rate trend increased in 2020 and 2021, and shows a 21% increase over the 17-year period. ENC is 17% greater than NC and 26% greater than RNC. The trends for ENC, NC and RNC are all increasing in moderately reliable trends.
- The ENC’s age-adjusted premature mortality rate increased in 2020 and 2021. The rate trends for ENC, NC, and RNC and the US are all increasing in moderately reliable trends. ENC is 29% higher than RNC and 19% higher than NC.
- Premature mortality rate trends for all demographic groups increased in 2021. The trend for non-White males is highest and increased 21% over the 17-year period. The rate for White males increased 13%.
- Rates for Whites and non-Whites increased in 2021. The non-White rate is 52% higher than the White rate.
- The racial disparity trend is not reliable.

Diseases of the Heart

- ENC’s heart disease rate trend has increased 6% over the 17-year period and is 23% higher than the RNC trend and 16% higher than NC. The rate has ticked up in recent years. The rate trends for NC and RNC are not reliable.
- ENC’s age-adjusted heart disease rate is 14% greater than NC, 21% greater than RNC and 9% greater than the US rate. All three rates have decreased at a similar pace over the 17-year period.
- The rate for non-White males is the highest and increased in 2021. The rate trend has decreased 16% over the 17-year period, compared to 23% for the White male rate. The non-White female rate is decreasing the most and is set to converge with the White female rate.
- The non-White rate is 13% higher than the White rate in 2021 and ticked up this year. The 17-year trend for both is decreasing.
- The trend for racial disparity is not reliable.

All Other Unintentional Injuries and Adverse Effects

- Mortality from unintentional injuries and adverse effects is increasing in ENC (229% increase over 17 years). The trends for RNC and NC are also increasing, but the ENC rate is increasing faster.
- The age-adjusted mortality rate trend for ENC, RNC, NC and the US are all increasing. ENC’s rate trend increased the most, 212% over the 17-year period.
- The 17-year trends for White males and non-White males are increasing significantly (256% and 215% respectively). The rates for White females and non-White females are increasing, but not as much.
- The non-White rate has increased 258% over the 17-year period. The White rate has increased 198%.
- The trend for racial disparity is not reliable.
Cerebrovascular Disease
- ENC’s cerebrovascular disease mortality rate trend shows a 21% increase over the recent 17-year period. It is 19% greater than the RNC rate and 13% greater than the NC rate.
- The age-adjusted rate has decreased 12% over the 17-year period. It is 17% greater than the RNC rate and 12% greater than the NC rate.
- The non-White male rate is the highest and has decreased 15% over the 17-year period. The non-White female rate has decreased 23% and is set to converge with the White male and female rates. The White male and White female rates are about the same but the trends are unreliable.
- The non-White rate in 2021 is 33% greater than the White rate but is decreasing more rapidly (19% over the 17-year period).
- There is a 35% decrease in racial disparity between Whites and non-Whites over the 17-year period.

Cancer—Trachea, Bronchus, Lung
- The cancer—TBL rate trend for ENC has decreased 14% over the recent 17-year period. The ENC rate is 24% greater than the RNC rate. The RNC rate has decreased 26%.
- In 2021 the age-adjusted rate for ENC was 18% above the RNC rate. The ENC rate decreased 38% over the 17-year period, while the RNC rate decreased 44%.
- In 2021 the non-White male rate was the highest but is only 6% higher than the White male rate, is decreasing, and will likely converge soon. The mortality rate for White females is 37% higher than the rate for non-White females and decreased 30% over the period. The rate for non-White females decreased 18%.
- The non-White mortality rate is 12% less than the White rate. Both are decreasing over the 17-year period at about the same pace.
- The 17-year rate trend for racial disparity is unreliable.

Chronic Lower Respiratory Diseases
- The ENC rate trend for CLRD in 2021 is increasing faster than RNC or NC—24% over the 17-year period compared to 9% for NC. The RNC trend is not reliable.
- The age-adjusted rate for 2021 for ENC, RNC and NC are virtually equal. The rate trends are all declining. The trend for ENC is 9% greater than the US rate.
- The age-adjusted rate for White males is the highest. The rates for White males and non-White males are decreasing. The rate for non-White females is lower but shows a 41% increase. The rate for White females is unreliable.
- The White rate has decreased 15% over the 17-year period. The non-White rate is 35% less than the White rate but the trend is unreliable.
- The racial disparity trend has seen a 42% increase over the 17-year period.

Diabetes Mellitus
- ENC’s diabetes mortality rate is 35% greater than RNC in 2021. The rate for ENC increased 49% over the 17-year period.
- ENC’s age-adjusted rate is flat over the 17-year period but the trend is unreliable. The trends for RNC and NC have increased 20% and 16%. The US rate is also unreliable.
- The rate for non-White males is the highest and is increasing (31% increase over the 17-year period). The White male rate has increased 24%. The non-White female rate has decreased 22%. The White female rate is unreliable.
- The non-White mortality rate trend is unreliable. The White rate has increased 13% over the 17-year period.
- The trend for racial disparity shows a 21% decrease in racial disparity over the 17-year period.
Alzheimer’s Disease
- The Alzheimer’s mortality rate for ENC shows a 238% increase over the recent 17-year period. ENC’s rate is 7% less than RNC and 5% less than NC but ENC’s rate of increase was larger than both and they are projected to converge.
- Over the 17-year period the age-adjusted rate for ENC has increased by 123%. The ENC rate is 7% less than the RNC rate and 5% less than NC. ENC has the highest rate increase and is projected to converge with RNC and NC. The ENC rate is 14% greater than US.
- The mortality rates for females, both White and non-White, are greater than for males. Non-White females have the highest rate of increase (178% over 17 years).
- The non-White mortality rate for Alzheimer’s has increased 174% over the 17-year period. In 2021 the non-White rate is 8% greater than the White rate.
- The racial disparity between non-White to White has increase 177% over the 17-year period.

Nephritis, Nephrotic Syndrome, and Nephrosis
- The ENC mortality rate trend for nephritis, nephrotic syndrome, and nephrosis is unreliable. The trend for RNC59 has increased 13% over the 17-year period and the NC trend has increased 11%.
- The age-adjusted ENC rate has decreased 24% over the 17-year period and is set to converge with the RNC and NC rates. The ENC rate is 33% greater than the US rate.
- The 17-year trend for non-White females is higher than for White males and females. Non-White females show the greatest decrease, 32% over 17 years. The rate for non-White males is unreliable.
- In 2021 the non-White rate was 122% greater than the White rate and has about the same decrease rate as the White rate over the 17-year period.
- The racial disparity trend is unreliable over the 17-year period.

Unintentional Motor Vehicle Injuries
- ENC’s unintentional motor vehicle injury mortality rate trend has ticked up in 2021 but the rate trends for ENC, RNC and NC are all unreliable.
- The ENC age-adjusted rate is 48% greater than RNC and 65% greater than the US. The 17-year rate trend for ENC is decreasing, but the trend is unreliable.
- The rates for non-White males and non-White females are increasing. The trends for White males and White females are decreasing. The non-White male rate is the highest.
- The White rate trend has decreased 37% over the 17-year period. The non-White rate has increased 37% over 17 years and is 78% greater than the White rate in 2021.
- Racial disparity has increased significantly over the 17-year period.

Chronic Liver Disease and Cirrhosis
- The ENC mortality rate for chronic liver disease and cirrhosis has increased 85% over the 17-year period. The ENC rate is 8% greater than the RNC rate and 6% greater than the NC rate, both of which are also increasing.
- The age-adjusted rate for ENC is 9% greater than the RNC rate, 6% greater than the NC rate and 4% greater than the US rate. The ENC rate trend has increased 51% over the 17-year period.
White males have the highest rate trend and it has increased 40% over the 17-year period. Non-White males are second highest, followed by White females then non-White females. The White female rate has increased the most, 91% over 17 years.

The White rate trend has increased 56% over the 17-year period. The non-White rate is 29% less than the White rate but has also increased.

The trend for racial disparity is unreliable.

Cancer - All Sites

The cancer - all sites mortality rate trend for ENC is greater than NC and has seen a 5% increase over the last 17 years. RNC has decreased by 3% and the trend for NC is unreliable.

The age-adjusted cancer - all sites mortality rate trends for ENC, RNC, NC and the US are all decreasing at about the same pace. The ENC rate trend is 10% greater than RNC and 11% greater than the US.

The rate for non-White males has decreased 35% over 17 years and the White male rate has decreased 25%. The non-White female and White female rates are about the same.

Both White and non-White cancer – all sites mortality rates are decreasing over the 17-year period, although non-White rates are 8% greater than Whites.

The 17-year trend for racial disparity shows a 52% decrease.

HIV Disease

The HIV mortality rate for ENC has decreased 77% over the past 17 years but was still 29% higher than RNC in 2021.

The 17-year age-adjusted rate trend for ENC has been decreasing, but was still 36% greater than RNC and 33% greater than US.

Non-White males continue to have the highest rate of age-adjusted mortality, but this rate has decreased 82% in a 17-year reliable trend. The rate for White males also decreased 86% and non-White females decreased 82%. A convergence of the non-White and White rate is expected in the future.

The 17-year non-White age-adjusted HIV mortality rate has decreased by 82% but was 730% greater than White in 2021. The White rate has decreased by 80%. The two rates are projected to converge in the future.

The racial disparity 17-year trend is not reliable.
3. Methods, Interpretation, and References

Data Sources
The data for mortality and premature mortality in Eastern North Carolina were obtained from death certificate data from the North Carolina State Center for Health Statistics and population data from the National Center for Health Statistics population estimates. For the US, data were obtained from the CDC Multiple Cause of Death public use data file.

Measures
Two types of mortality measures are covered in this report. The first, called mortality rate, is a rate based on the number of deaths per population (or, deaths normalized by the population that produced them) for a given unit area, such as the county, region, or state over a specified time interval. The mortality rate is expressed in two ways, the basic true (actual or observed) rate, and an age-adjusted rate (see below). Mortality rates are used to evaluate the impact and burden of mortality on a population and to make comparisons, where appropriate, among populations. Like the mortality rate, the second type, called premature mortality rate, is also a density measure, but instead of deaths, it is the number of person-years lost in a population before a specified age. In this report mortality rates are emphasized with premature mortality (YLL-75) shown only for the total number of deaths from all causes (general mortality). Premature mortality in detail is the focus of Report Series #1.

A simple count of deaths occurring in an area for a given time interval is useful for identifying potential problems or issues of public concern—particularly if the deaths result from a rare cause or they are believed to be an emerging problem for at-risk socio-demographic groups. In this sense, count data are used for sentinel surveillance. Because counts reveal nothing about the underlying population base from which deaths arise, the analytical or practical utility of count data is limited. The size of the underlying population will have an expected effect on the numbers of deaths that occur. Deaths measured in relation to a population, are an expression of density. When measured over a given interval of time (usually 1 to 5 years), the density is called a rate. (The rate is typically multiplied by 100,000 for ease in interpreting the usually small resultant value.) The mortality rate is an improvement over simple count data because it accounts for the relative size and effect of the underlying population. The chief advantage of the mortality rate is that it is useful for focusing attention on the burden of public health problems more rigorously than simple counts. However, the mortality rate is also affected by the age structure of the population, which can confound interpretation when making comparisons of rates among different areas.

Because aging is the greatest risk factor for death, the age structure of a population will have a substantial effect on the mortality rate. For example, two counties may have similar population sizes but one has a larger number of people over the age of 45 than the other. It is more likely that the older population will generate more deaths over an interval of time and this will be reflected in a higher mortality rate. Differing age structures among populations will confound any comparisons of mortality rates among those populations. Therefore, a method for controlling the effects of age structure on the mortality rate is required if any meaningful comparisons are to be made.

Age-adjustment to control for a population’s age structure requires an external reference or standard to weight the comparison populations by age groups. Currently, the US 2000 Standard Million Population (SMP) is used as the external reference. The US 2000 SMP is divided into a number of age groups whose sizes or proportions serve as weights to be applied to the corresponding age groups of the study population. This proportional redistribution generates new numbers of expected deaths in each of the corresponding age groups of the study population. These expected deaths are the number of deaths we would expect if the study population had the same age structure as the US 2000 SMP. The expected number of deaths are summed and normalized by the total population yielding an age-adjusted death rate. Once the effects of age structure are controlled, the way is paved for making comparisons among populations (Buescher, 1998).
The second measure, premature mortality, focuses on the burden of disease and death expressed in terms of accumulated person years lost before a benchmark age. We use 75 years of age as a benchmark because it approximates current life expectancy at birth in the United States and gives weight to deaths from chronic disease occurring in later life. It considers only deaths of people who die before age 75. To calculate the number of years lost, the mid-point age of the age group to which each decedent belongs is subtracted from 75 and the differences (the lost years) are summed. After all lost years are summed; the result is normalized by the population under age 75 and multiplied by 10,000. Premature mortality is expressed as a rate measured over a time interval, and it can also be age-adjusted.

Age-adjusted rates for both mortality and premature mortality have little intrinsic meaning, however, and can mask the burden and trends of mortality (or health event) that may be of local importance. A casual inspection of adjusted rates may divert attention from the actual health problems of a population and inappropriately guide interventions or resource allocation. Thus, it is important to consider the actual number of deaths (count data) in conjunction with the basic non-adjusted mortality rate first, and then use the adjusted rate only if one wishes to factor out age in understanding the pattern of mortality among populations and regions. For regions with larger populations the statistics presented here are for the year 2021. Smaller areas like counties will usually be aggregated into 5-year intervals (e.g., 2017 to 2021). A five-year interval is used because it provides a useful summary of the mortality experience while minimizing wide year-to-year fluctuations in the rate due to the effect of small numbers.

Interpreting the Pie Charts
Pie charts are provided as a visual representation of the burden of mortality. They depict the proportion of mortality accounted for by each of the leading contributors. (The leading causes of death are found in the table preceding the pie chart section.) The pie charts compare the relative levels of burden and proportions by region and demographic groups. Each regional and demographic set of pie charts is based on the observed mortality rate and the age-adjusted (expected) mortality rate.

The first two pie chart figures compare the proportions of leading causes of death across regions at the national, state, and regional/county level. The first figure in this set compares absolute mortality (the burden) using mortality rates, which sheds light on any differences in the burden of mortality by disease intrinsic to each region. The second figure, which is age-adjusted, allows for direct comparisons among regions. The same pattern is repeated in the following figures that show differences among demographic groups.

While comparing the pie charts, the reader should remember that the slices of the pie show differences in how much of the mortality rate (including age-adjusted) is accounted for by a specific cause. Finally, the reader will see that some pies are composed of different leading causes of mortality, so they have different colored slices. The variable sizes of pie slices demonstrate differences in the mortality patterns across populations and are of significant importance in studying inequalities and disparities in population health.

Interpreting the Trend Figures
Four types of figures are used to show trends in mortality, for all causes combined, and for each of the ten leading causes in the region/county over a 32-year period. Premature mortality is described for deaths by all causes only. The first of the four types of figures depicts the observed mortality rates for the region/county and state. The second figure type shows age-adjusted mortality rates for the region/county, state, and nation allowing comparisons among geographical areas. The third figure type compares trends in age-adjusted mortality rates by race and gender. Adjustment is made for age structure differences among demographic groups, which permits observation on the effects of race and gender on these groups. The last figure type depicts racial differences (or disparities) expressed as a ratio (in percent) of age-adjusted mortality for non-Whites to the age-adjusted rates for Whites over the 32 year time series. Trend lines provide historical depth to mortality processes and a basis for prediction, future comparisons, and action.
The trend line concept is borrowed from statistical modeling. However, unlike true modeling, we are not assuming the statistical independence of each sequential observation (the rate at time interval x). Instead, our assumption is that each observation is dependent to some degree on previous observations, forming a trend. If the degree of dependence is high, then the observations (rates) should lie close to the trend line. If observations appear to bounce around the fitted line in a random fashion (indicating high variability), then there is less dependence and less of a trend in the observations. We use trend lines to uncover any general patterns found in the data for the purpose of assisting the investigator in understanding the underlying processes which generate them.

The equation of the line is derived from a set of observation points. This line is an estimate of where each observed rate would be if the previous observation could predict with 100% accuracy the value of the next observation. In nature, this situation seldom arises and the degree to which individual observations deviate from this linear trend line is an indication of how well they “fit” or conform to the trend. The linear trend lines in the time series figures project expected rates to the year 2030 from known historical values (2005 to 2021) to provide a general idea about where mortality trends are heading.

The equation of the line allows the user to calculate an expected or fitted rate for any given year, x. For example, in figure 6.3 ii the year 2013 is the 9th year in the series, so 9 would be substituted for x in the equation of the line derived from ENC41’s age-adjusted mortality rate series for a selected cause of death. For cerebrovascular disease (2005 to 2021), the 2013 expected or fitted age-adjusted rate is calculated to be 48.83 deaths per 100,000 people. The observed age-adjusted rate for 2013 is 45 deaths per 100,000 people. (The observed rates are the values found in the table that runs along the x-axis of the time series chart.) The numeric difference between the expected and observed rates for 2013 is 3.83—the model (the equation of the line) overestimates the observed value by 3.83 deaths. Each previous and subsequent year’s difference between the expected and observed rates will vary to a greater or lesser degree depending on the size of the population under study (see below). This variation can be measured to determine how well the line fits or models the observed data.

In the time series figures, the investigator will find several statistical tools to assist in the analyses of trend lines and fitted rates. These tools include the coefficient of determination, percent change values, and slope coefficients. These tools enable the investigator to form not only a mental picture of the comparative impact of mortality by cause on a region and population but to also gain insight into what the near demographic future holds for them.

Coefficients of determination (R^2) are provided to indicate how well the fitted line predicts or explains the observed rates. When variation in the observed rates is relatively high (the fitted trend line does not correspond well to the observed trend line) R^2 approaches 0.0, when the variation is low, R^2 approaches 1.0. A low R^2 implies low reliability and a larger R^2 indicates that a greater degree of confidence can be placed in the trend line. The trend lines are generally unreliable when R^2 is less than 0.10, moderately reliable when R^2 is between 0.10 and 0.35, and most reliable when R^2 is equal to or greater than 0.35. Graphically, data points, data lines and trend lines are weighted according to their reliability and significance. The thinnest, trend lines are for those where R^2 is less than 0.10 and should be considered not reliable. The thickest lines are used for trends where the R^2 is equal to or greater than 0.35. In some cases, the trend lines do not fit the data well (i.e. small R^2). In other words, the presentation of a trend line does not necessarily indicate a linear trend in the data line. In several instances a non-linear trend may be present. It should be noted that the linear trend modeling undertaken here is a major simplification of real world processes. These processes are dynamical in nature and can be modeled and fitted with certain limitations and assumptions. Time series of epidemic infectious disease mortality rates typically exhibit a curvilinear pattern. A marked curvilinear pattern is seen in the mortality series for HIV/AIDS mortality, general cancer mortality, and several others which can be approximated into at least two sequential linear segments. Each segment is joined to another in the sequence at a point in time or year. In this series (#2), we begin to explore alternative methods for examining trends that show discontinuities and reversals within the set of time series observations, particularly within the mortality time series for HIV/AIDS.
Percent change provides a measure of the estimated change in mortality over the most recent period (2005-2021). The percent value is followed by the term increase or decrease to help denote the direction of the overall trend. This information is in boldface and included with the R^2 value and the equation of the line. Percent change and the direction of that change is provided on the graphs for trends where R^2 is greater than 0.10.

Another tool is the equation of the line that fits a trend among the observed data point (the rates). The slope coefficient of this equation, b, is the estimated/expected number of deaths per unit of time (x) or the rate of change in deaths per annum. The direction of change is indicated with a negative sign preceding the b and if positive, b is unsigned. Visually, a negative slope shows a trend decreasing in annual rates from left to right and a positive slope will be rising (increasing) from left to right. An examination of the different slopes for regional or demographic group trends will quickly reveal that they are not equal. Visual inspection combined with slope coefficients also provides a means for making comparisons between any two trend line series in the time series figure. Trends will diverge, converge, or run parallel with one another indicating, respectively, increasing separation, decreasing separation, or very little change in rates between two trend lines. Setting two equations of the line equal to one another can yield an estimated year of convergence in the future (or the year the two trends diverged in the past). However, the investigator is cautioned to not put too much stock in the results if the forward or backward projections are very distant in time, especially when R^2 is low. Recent (or temporally adjacent) short term trends with good correspondence between the fitted trend line and observed trend line will be better indicators of rates in the near future or past (if historical rates are unknown).

The final tool is the pair of comparison tables located in the lower portion of the page. The tables, found in every time series figure (except the ones showing comparisons by race and disparity) are structured so that the reader can make comparisons of rates derived from the equation of the line (i.e., the fitted rates) among all regions or demographic groups portrayed in the figure. The 2005 and 2021 tables compare the fitted rates calculated for the beginning and end of the observed time series in terms of percent difference. Returning to figure 6.3 ii, ENC41’s age-adjusted fitted rate for cerebrovascular disease in 2005 is 5% greater than (GT) RNC’s fitted rate. In 2021, ENC41’s fitted rate is 17% greater than (GT) RNC’s fitted rate. The tables permit a quick assessment of trends calculated from observed time series data.

The reader should notice that some data lines in the trend figures fluctuate widely. This fluctuation is due to two main factors. In a small population, the number of deaths may vary widely from year-to-year and lead to large changes in annual mortality and premature mortality rates, a phenomenon known as the effect of small numbers. In addition, because mortality is based on the age of death, any fluctuation in the distribution of deaths across age groups from year-to-year can cause rates to change dramatically. Both the number of deaths and the age of decedents influence trends in mortality. The reader should evaluate all available data carefully before drawing conclusions about current, past and future mortality patterns.

Caveats about the Concepts of Race, Gender, and Geography

Several caveats are offered about the concepts of race, gender, and geography as they apply to the analysis of mortality patterns. While we do intend to bring attention to the stark racial inequalities in mortality across North Carolina, we do not mean to imply that this is a biological phenomenon. Other factors such as differences in socioeconomic status, educational attainment, occupation, and lifestyle probably account for the large racial gaps in mortality rates. Likewise, gender inequalities may have less to do with biological differences between men and women than with socially structured gender roles, health behaviors, occupational exposures, and use of health services. Finally, it is important to consider that county borders may not always be the most appropriate way to look at specific health problems. Few of our health care problems begin or end at political boundary lines and many of our health problems in North Carolina are common to large groups of counties.
and larger regions composed of counties are convenient units of data collection and readers should not jump to conclusions about health problems or possible solutions based solely on the way data appear when aggregated to this level. In some cases, data at multi-county, zip code, or minor civil division levels are a better way to understand problems and solutions. Similarly, as indicated in Healthy Carolinians 2030, consideration needs to be given to whether or not a county is characterized as rural or urban, as this can be an indication to the level of development and amount of resources available in a county.
Trends and Disparities in Mortality in Eastern North Carolina-41 Counties

General References

Cited References

4. Current Disparities in Mortality by Geography, Race and Gender, and Race: Total and Five Leading Causes of Death
Figure 4.1 i. General leading causes of death for ENC41 (2021), NC (2021), and US (2021). Mortality rate per 100,000 population.

ENC41:
- 1267 deaths/100,000
- Diseases of Heart: 42%
- Cancer - All Sites: 6%
- Cerebrovascular Disease: 19%
- COVID-19: 5%
- All Other Deaths: 17%

North Carolina:
- 1119 deaths/100,000
- Diseases of Heart: 43%
- Cancer - All Sites: 6%
- Cerebrovascular Disease: 18%
- COVID-19: 5%
- All Other Deaths: 17%

United States:
- 1044 deaths/100,000
- Diseases of Heart: 40%
- Cancer - All Sites: 5%
- Cerebrovascular Disease: 18%
- COVID-19: 5%
- All Other Deaths: 20%

2021 NC rate is 7% higher than US rate

Slices without percentages constitute less than 5% of the deaths within that chart.
Figure 4.1 ii. General leading causes of death for ENC41 (2021), NC (2021), and US (2021). Age-adjusted mortality rate per 100,000 population.

2021 NC age-adj. rate is 9% higher than US

Slices without percentages constitute less than 5% of the deaths within that chart.
Figure 4.2 i. General leading causes of death for ENC41 (2021) by race and gender. Mortality rate per 100,000 population.

Non-White Males

Non-White Females

White Males

White Females

Slices without percentages constitute less than 5% of the deaths within that chart.
Figure 4.2 ii. General leading causes of death for ENC41 (2021) by race and gender. Age-adjusted mortality rate per 100,000 population.

2021 ENC41 NWM age-adjusted rate is 29% higher than 2021 ENC41 WM age-adjusted rate

1525 deaths/100,000 1180 deaths/100,000

2021 ENC41 NWF age-adjusted rate is 17% higher than 2021 ENC41 WF age-adjusted rate

992 deaths/100,000 849 deaths/100,000

Slices without percentages constitute less than 5% of the deaths within that chart.
Figure 4.3 i. General leading causes of death for ENC41 (2021) by race. Mortality rate per 100,000 population.

Non-White

1235 deaths/100,000

White

1284 deaths/100,000

Slices without percentages constitute less than 5% of the deaths within that chart.
Figure 4.3 ii. General leading causes of death for ENC41 (2021) by race. Age-adjusted mortality rate per 100,000 population.

2021 ENC41 NW age-adjusted rate is 22% higher than 2021 ENC41 W age-adjusted rate

- Diseases of Heart
- Cancer - All Sites
- Cerebrovascular Disease
- Chronic Lower Respiratory Diseases
- Diabetes Mellitus
- COVID-19
- Alzheimers Disease
- All Other Unintentional Injuries and Adverse Effects
- All Other Deaths

1222 deaths/100,000

1003 deaths/100,000

Slices without percentages constitute less than 5% of the deaths within that chart.
5. Trends and Disparities in Mortality in ENC41: All Causes of Death and All Causes of Premature Mortality; 1990-2021
All Causes of Death

- ENC’s all-cause mortality rate trend is increasing, and the yearly rate showed a large jump in 2020 and again in 2021. The ENC rate trend is 13% greater than RNC and 9% greater than NC. The ENC trend has increased 35% over the 17-year period.

- The age-adjusted all-cause mortality rate for ENC had been declining prior to 2020 but has now increased sharply. ENC’s trend is 8% greater than NC and 11% greater than RNC but the trendline is flat and not reliable.

- The rates increased for all groups in 2021. The trendlines are all flat and not reliable.

- Yearly rates for Whites and non-Whites increased in 2020 and 2021. The rate trends are not reliable.

- Racial disparity decreased in 2021, but the 17-year rate trend is flat and unreliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 5.1 i. All Causes of Death:
Trends in mortality rates for ENC41, RNC59, and NC
1990-2021 with projections to 2030

ENC41 17-yr trendline
35% increase
R2 = 0.59
y = 16.49x + 794.44

RNC59 17-yr trendline
23% increase
R2 = 0.59
y = 10.58x + 767.37

NC 17-yr trendline
27% increase
R2 = 0.59
y = 12.15x + 775.75

2005 ENC41 rate is 4% greater than RNC59
2021 ENC41 rate is 13% greater than RNC59

Comparison of Fitted Rates in 2005
ENC41 RNC59 NC
4% GT 3% LT 2% LT ENC41
2% GT 1% LT 1% LT RNC59

Comparison of Fitted Rates in 2021
ENC41 RNC59 NC
13% GT 11% LT 8% LT ENC41
9% GT 3% LT 4% GT RNC59
3% LT 2% LT NC
Figure 5.1 ii. All Causes of Death:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>9% GT</td>
<td>6% LT</td>
<td>11% LT</td>
<td>ENC41</td>
<td></td>
</tr>
<tr>
<td>6% GT</td>
<td>3% GT</td>
<td>4% LT</td>
<td>RNC59</td>
<td></td>
</tr>
<tr>
<td>13% GT</td>
<td>2% LT</td>
<td>7% GT</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LT</td>
<td>7% LT</td>
<td>13% LT</td>
<td>ENC41</td>
<td></td>
</tr>
<tr>
<td>8% GT</td>
<td>3% GT</td>
<td>4% LT</td>
<td>RNC59</td>
<td></td>
</tr>
<tr>
<td>15% GT</td>
<td>4% GT</td>
<td>7% GT</td>
<td>US</td>
<td></td>
</tr>
</tbody>
</table>

2005 ENC41 rate is 9% greater than RNC59
2021 ENC41 rate is 11% greater than RNC59
Figure 5.1 iii. All Causes of Death: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

NWM 17-yr trendline WM 17-yr trendline NWF 17-yr trendline WF 17-yr trendline

R2 = 0.00 R2 = 0.00 R2 = 0.00 R2 = 0.01
y = 1.58x + 1,196.36 y = 0.22x + 967.67 y = -0.67x + 803.23 y = 0.87x + 689.85

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>Race</th>
<th>LT</th>
<th>GT</th>
<th>LT</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWM</td>
<td>19%</td>
<td>24%</td>
<td>33%</td>
<td>49%</td>
</tr>
<tr>
<td>WM</td>
<td>42%</td>
<td>17%</td>
<td>33%</td>
<td>49%</td>
</tr>
<tr>
<td>NWF</td>
<td>42%</td>
<td>29%</td>
<td>16%</td>
<td>20%</td>
</tr>
<tr>
<td>WF</td>
<td>16%</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>Race</th>
<th>LT</th>
<th>GT</th>
<th>LT</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWM</td>
<td>21%</td>
<td>26%</td>
<td>35%</td>
<td>49%</td>
</tr>
<tr>
<td>WM</td>
<td>42%</td>
<td>21%</td>
<td>38%</td>
<td>49%</td>
</tr>
<tr>
<td>NWF</td>
<td>42%</td>
<td>28%</td>
<td>42%</td>
<td>42%</td>
</tr>
<tr>
<td>WF</td>
<td>13%</td>
<td>22%</td>
<td>11%</td>
<td>49%</td>
</tr>
</tbody>
</table>
Figure 5.1 iv. All Causes of Death:
Trends in age-adjusted mortality rates by race for ENC41,
1990-2021 with projections to 2030

2005 non-White rate is 18% greater than White
2021 non-White rate is 18% greater than White
Figure 5.1 v. All Causes of Death:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

\[R^2 = 0.00 \]
\[y = -0.02x + 17.84 \]
All Causes of Premature Mortality

- ENC’s premature mortality rate trend increased in 2020 and 2021, and shows a 21% increase over the 17-year period. ENC is 17% greater than NC and 26% greater than RNC. The trends for ENC, NC and RNC are all increasing in moderately reliable trends.

- The ENC’s age-adjusted premature mortality rate increased in 2020 and 2021. The rate trends for ENC, NC, and RNC and the US are all increasing in moderately reliable trends. ENC is 29% higher than RNC and 19% higher than NC.

- Premature mortality rate trends for all demographic groups increased in 2021. The trend for non-White males is highest and increased 21% over the 17-year period. The rate for White males increased 13%.

- Rates for Whites and non-Whites increased in 2021. The non-White rate is 52% higher than the White rate.

- The racial disparity trend is not reliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 5.2 i. All Causes of Premature Mortality: Trends in premature mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
- 21% increase
- \(R^2 = 0.25 \)
- \(y = 10.50x + 858.78 \)

RNC59 17-yr trendline
- 15% increase
- \(R^2 = 0.20 \)
- \(y = 6.17x + 718.16 \)

NC 17-yr trendline
- 16% increase
- \(R^2 = 0.21 \)
- \(y = 7.19x + 759.51 \)

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% GT</td>
<td>16% LT</td>
<td>12% LT</td>
</tr>
<tr>
<td>13% GT</td>
<td>6% GT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% GT</td>
<td>20% LT</td>
<td>15% LT</td>
</tr>
<tr>
<td>13% GT</td>
<td>6% GT</td>
<td>ENC41</td>
</tr>
<tr>
<td>17% GT</td>
<td>7% LT</td>
<td>RNC59</td>
</tr>
</tbody>
</table>

2005 ENC41 rate is 20% greater than RNC59
2021 ENC41 rate is 26% greater than RNC59
Figure 5.2 ii. All Causes of Premature Mortality:
Trends in age-adjusted premature mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

Comparison of Fitted Rates in 2021

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Trends and Disparities in Mortality in Eastern North Carolina - 41 Counties

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU

Figure 5.2 iii. All Causes of Premature Mortality: Trends in age-adjusted premature mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

- **NWM 17-yr trendline**: 21% increase, $R^2 = 0.14$, $y = 16.79x + 1,345.86$
- **WM 17-yr trendline**: 13% increase, $R^2 = 0.14$, $y = 6.96x + 904.21$
- **NWF 17-yr trendline**: 19% increase, $R^2 = 0.06$, $y = 5.28x + 824.76$
- **WF 17-yr trendline**: 13% increase, $R^2 = 0.30$, $y = 6.01x + 529.11$

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>49% GT</td>
<td>33% LT</td>
<td>39% LT</td>
<td>61% LT</td>
<td>NWM</td>
</tr>
<tr>
<td>63% GT</td>
<td>9% LT</td>
<td>41% LT</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>154% GT</td>
<td>71% GT</td>
<td>56% GT</td>
<td>NWF</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>59% GT</td>
<td>37% LT</td>
<td>44% LT</td>
<td>61% LT</td>
<td>NWM</td>
</tr>
<tr>
<td>78% GT</td>
<td>10% LT</td>
<td>38% LT</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>158% GT</td>
<td>62% GT</td>
<td>45% GT</td>
<td>WF</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.2 iv. All Causes of Premature Mortality:
Trends in age-adjusted premature mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline
18% increase
R2 = 0.12
y = 11.36x + 1,064.68

W 17-yr trendline
15% increase
R2 = 0.20
y = 6.52x + 716.84

2005 non-White rate is 49% greater than White
2021 non-White rate is 52% greater than White
Figure 5.2 v. All Causes of Premature Mortality:
Measuring disparity in age-adjusted premature mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

R² = 0.00
y = 0.11x + 49.09

Percentage difference - non-White to White

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

% difference

74 73 76 86 83 75 80 81 75 72 59 56 50 61 64 58 53 41 43 35 34 36 53 48 48 48 52 52 66 59
6. Trends and Disparities in Mortality in ENC41:
Ten Specific Leading Causes of Death, 1990-2021
Diseases of Heart

- ENC’s heart disease rate trend has increased 6% over the 17-year period and is 23% higher than the RNC trend and 16% higher than NC. The rate has ticked up in recent years. The rate trends for NC and RNC are not reliable.

- ENC’s age-adjusted heart disease rate is 14% greater than NC, 21% greater than RNC and 9% greater than the US rate. All three rates have decreased at a similar pace over the 17-year period.

- The rate for non-White males is the highest and increased in 2021. The rate trend has decreased 16% over the 17-year period, compared to 23% for the White male rate. The non-White female rate is decreasing the most and is set to converge with the White female rate.

- The non-White rate is 13% higher than the White rate in 2021 and ticked up this year. The 17-year trend for both is decreasing.

- The trend for racial disparity is not reliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.1 i. Diseases of Heart:
Trends in mortality rates for ENC41, RNC59, and NC,
1990-2021 with projections to 2030

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline

6% increase
R2 = 0.11
R2 = 0.08
R2 = 0.01
y = 0.77x + 202.33
y = -0.45x + 181.40
y = -0.14x + 187.58

2005 ENC41 rate is 12% greater than RNC59
2021 ENC41 rate is 23% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LT</td>
<td>7% LT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>19% LT</td>
<td>14% LT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline

6% increase
R2 = 0.11
R2 = 0.08
R2 = 0.01
y = 0.77x + 202.33
y = -0.45x + 181.40
y = -0.14x + 187.58

2005 ENC41 rate is 12% greater than RNC59
2021 ENC41 rate is 23% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LT</td>
<td>7% LT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>19% LT</td>
<td>14% LT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline

6% increase
R2 = 0.11
R2 = 0.08
R2 = 0.01
y = 0.77x + 202.33
y = -0.45x + 181.40
y = -0.14x + 187.58

2005 ENC41 rate is 12% greater than RNC59
2021 ENC41 rate is 23% greater than RNC59
Figure 6.1 ii. Diseases of Heart:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
22% decrease
R2 = 0.62
y = -2.78x + 218.30

RNC59 17-yr trendline
24% decrease
R2 = 0.74
y = -2.57x + 185.00

NC 17-yr trendline
23% decrease
R2 = 0.71
y = -2.64x + 194.41

US 17-yr trendline
22% decrease
R2 = 0.70
y = -2.65x + 201.48

2005 ENC41 rate is 18% greater than RNC59
2021 ENC41 rate is 21% greater than RNC59

Comparison of Fitted Rates in 2005
ENC41 RNC59 NC US ENC41 RNC59 NC US
18% GT 15% LT 11% LT 8% LT ENC41
12% GT 5% LT 5% LT 4% LT ENC41
8% GT 8% LT 4% LT ENC41

Comparison of Fitted Rates in 2021
ENC41 RNC59 NC US ENC41 RNC59 NC US
21% GT 17% LT 12% LT 8% LT ENC41
14% GT 6% GT 11% GT 5% GT ENC41
9% GT 10% LT 4% LT ENC41

15% LT 11% LT 8% LT ENC41
17% LT 12% LT 8% LT ENC41
8% LT 4% LT ENC41

12% GT 5% LT 4% LT ENC41
14% GT 5% LT 5% GT ENC41
8% LT 4% LT ENC41

18% GT 5% LT 4% LT ENC41
21% GT 6% GT 11% GT ENC41
9% LT 4% LT ENC41

12% GT 4% LT 4% LT ENC41
14% GT 5% LT 5% LT ENC41
8% LT 4% LT ENC41
Figure 6.1 iii. Diseases of Heart:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LT</td>
<td>11% GT</td>
<td>34% LT</td>
<td>44% LT</td>
<td>37% LT</td>
</tr>
<tr>
<td>17% GT</td>
<td>52% GT</td>
<td>60% GT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>17% LT</td>
<td>17% GT</td>
<td>43% LT</td>
<td>48% LT</td>
<td></td>
</tr>
<tr>
<td>34% LT</td>
<td>75% GT</td>
<td>46% GT</td>
<td>10% LT</td>
<td></td>
</tr>
<tr>
<td>44% LT</td>
<td>93% GT</td>
<td>61% GT</td>
<td>11% GT</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.1 iv. Diseases of Heart: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline

W 17-yr trendline

22% decrease

R² = 0.55
y = -3.06x + 236.92

R² = 0.64
y = -2.78x + 210.51

2005 non-White rate is 13% greater than White
2021 non-White rate is 13% greater than White
Figure 6.1 v. Diseases of Heart:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

R² = 0.01
y = 0.11x + 12.08
All Other Unintentional Injuries and Adverse Effects

- Mortality from unintentional injuries and adverse effects is increasing in ENC (229% increase over 17 years). The trends for RNC and NC are also increasing, but the ENC rate is increasing faster.
- The age-adjusted mortality rate trend for ENC, RNC, NC and the US are all increasing. ENC’s rate trend increased the most, 212% over the 17-year period.
- The 17-year trends for White males and non-White males are increasing significantly (256% and 215% respectively). The rates for White females and non-White females are increasing, but not as much.
- The non-White rate has increased 258% over the 17-year period. The White rate has increased 198%.
- The trend for racial disparity is not reliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.2 i. All Other Unintentional Injuries and Adverse Effects: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
229% increase
R2 = 0.74
y = 2.28x + 16.94

RNC59 17-yr trendline
129% increase
R2 = 0.77
y = 1.62x + 21.32

NC 17-yr trendline
152% increase
R2 = 0.76
y = 1.80x + 20.10

2005 ENC41 rate is 21% less than RNC59
2021 ENC41 rate is 13% greater than RNC59

Comparison of Fitted Rates in 2005
ENC41 RNC59 NC
21% LT 6% LT ENC41
26% GT 19% GT ENC41

Comparison of Fitted Rates in 2021
ENC41 RNC59 NC
13% GT 4% LT RNC59
12% LT 8% LT ENC41
9% GT 4% LT RNC59
Figure 6.2 ii. All Other Unintentional Injuries and Adverse Effects:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
212% increase
R2 = 0.70
y = 2.20x + 17.64

RNC59 17-yr trendline
115% increase
R2 = 0.72
y = 1.46x + 21.53

NC 17-yr trendline
137% increase
R2 = 0.72
y = 1.65x + 20.50

US 17-yr trendline
129% increase
R2 = 0.82
y = 1.46x + 19.20

2005 ENC41 rate is 18% less than RNC59
2021 ENC41 rate is 18% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
<th>ENC41</th>
</tr>
</thead>
<tbody>
<tr>
<td>18% LT</td>
<td>22% GT</td>
<td>16% GT</td>
<td>9% GT</td>
<td>ENC41</td>
</tr>
<tr>
<td>14% LT</td>
<td>5% LT</td>
<td>11% LT</td>
<td>RNC59</td>
<td></td>
</tr>
<tr>
<td>8% LT</td>
<td>12% GT</td>
<td>7% GT</td>
<td>US</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
<th>ENC41</th>
</tr>
</thead>
<tbody>
<tr>
<td>18% GT</td>
<td>15% LT</td>
<td>11% LT</td>
<td>20% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>13% GT</td>
<td>4% LT</td>
<td>5% LT</td>
<td>9% LT</td>
<td>NC</td>
</tr>
<tr>
<td>24% GT</td>
<td>5% GT</td>
<td>10% GT</td>
<td>US</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.2 iii. All Other Unintentional Injuries and Adverse Effects: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

- NWM 17-yr trendline: 256% increase (R² = 0.50, y = 2.80x + 18.63)
- WM 17-yr trendline: 215% increase (R² = 0.75, y = 3.14x + 24.87)
- NWF 17-yr trendline: 178% increase (R² = 0.52, y = 0.98x + 9.37)
- WF 17-yr trendline: 165% increase (R² = 0.76, y = 1.52x + 15.61)

Comparison of Fitted Rates in 2005:
- NWM: 33% GT, 25% LT
- WM: 50% LT, 16% LT
- NWF: 165% GT, 67% GT
- WF: 59% GT, 40% LT

Comparison of Fitted Rates in 2021:
- NWM: 18% GT, 16% LT
- WM: 60% LT, 37% LT
- NWF: 153% GT, 199% GT
- WF: 59% GT, 88% GT

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0 20 40 60 80 100 120 140
Age-adjusted mortality rate per 100,000 population

Age
- adjusted mortality rate per 100,000 population
Figure 6.2 iv. All Other Unintentional Injuries and Adverse Effects: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline
258% increase
R² = 0.53
y = 1.91x + 12.54

W 17-yr trendline
198% increase
R² = 0.77
y = 2.33x + 20.05

2005 non-White rate is 37% less than White
2021 non-White rate is 25% less than White
Figure 6.2 v. All Other Unintentional Injuries and Adverse Effects: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

R2 = 0.00
y = 0.01x - 43.07
Cerebrovascular Disease

- ENC’s cerebrovascular disease mortality rate trend shows a 21% increase over the recent 17-year period. It is 19% greater than the RNC rate and 13% greater than the NC rate.

- The age-adjusted rate has decreased 12% over the 17-year period. It is 17% greater than the RNC rate and 12% greater than the NC rate.

- The non-White male rate is the highest and has decreased 15% over the 17-year period. The non-White female rate has decreased 23% and is set to converge with the White male and female rates. The White male and White female rates are about the same but the trends are unreliable.

- The non-White rate in 2021 is 33% greater than the White rate but is decreasing more rapidly (19% over the 17-year period).

- There is a 35% decrease in racial disparity between Whites and non-Whites over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.3 i. Cerebrovascular Disease:
Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

21% increase
R² = 0.33
y = 0.58x + 47.09

RNC59 17-yr trendline
R² = 0.01
y = -0.05x + 48.11

NC 17-yr trendline
R² = 0.03
y = 0.12x + 47.86

2005 ENC41 rate is 2% less than RNC59
2021 ENC41 rate is 19% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% GT</td>
<td>2% GT</td>
<td>ENC41</td>
</tr>
<tr>
<td>2% LT</td>
<td>1% LT</td>
<td>RNC59</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>16% LT</td>
<td>12% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>19% GT</td>
<td>5% GT</td>
<td>RNC59</td>
</tr>
<tr>
<td>13% GT</td>
<td>5% LT</td>
<td>NC</td>
</tr>
</tbody>
</table>
Figure 6.3 ii. Cerebrovascular Disease:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline
US 17-yr trendline

12% decrease 22% decrease 19% decrease 17% decrease

R2 = 0.18 R2 = 0.54 R2 = 0.45 R2 = 0.42

y = -0.35x + 51.98 y = -0.63x + 49.68 y = -0.56x + 50.40 y = -0.43x + 43.34

2005 ENC41 rate is 5% greater than RNC59
2021 ENC41 rate is 17% greater than RNC59
Figure 6.3 Cerebrovascular Disease: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030.
Figure 6.3 iv. Cerebrovascular Disease: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline
19% decrease
R² = 0.28
\(y = -0.78x + 68.27 \)

W 17-yr trendline
8% decrease
R² = 0.10
\(y = -0.22x + 45.56 \)

2005 non-White rate is 50% greater than White
2021 non-White rate is 33% greater than White
Figure 6.3 v. Cerebrovascular Disease:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity
35% decrease
$R^2 = 0.24$
y = -1.03x + 49.54

% difference - non-White to White

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>43</td>
</tr>
<tr>
<td>91</td>
<td>47</td>
</tr>
<tr>
<td>92</td>
<td>45</td>
</tr>
<tr>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>94</td>
<td>56</td>
</tr>
<tr>
<td>95</td>
<td>30</td>
</tr>
<tr>
<td>96</td>
<td>47</td>
</tr>
<tr>
<td>97</td>
<td>41</td>
</tr>
<tr>
<td>98</td>
<td>27</td>
</tr>
<tr>
<td>99</td>
<td>43</td>
</tr>
<tr>
<td>00</td>
<td>40</td>
</tr>
<tr>
<td>01</td>
<td>56</td>
</tr>
<tr>
<td>02</td>
<td>51</td>
</tr>
<tr>
<td>03</td>
<td>59</td>
</tr>
<tr>
<td>04</td>
<td>37</td>
</tr>
<tr>
<td>05</td>
<td>45</td>
</tr>
<tr>
<td>06</td>
<td>41</td>
</tr>
<tr>
<td>07</td>
<td>41</td>
</tr>
<tr>
<td>08</td>
<td>28</td>
</tr>
<tr>
<td>09</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
</tr>
</tbody>
</table>

Report #2.203, March 2024

Health Systems Research and Development, Dept. of Public Health, ECU
Cancer - Trachea, Bronchus, Lung

- The cancer—TBL rate trend for ENC has decreased 14% over the recent 17-year period. The ENC rate is 24% greater than the RNC rate. The RNC rate has decreased 26%.

- In 2021 the age-adjusted rate for ENC was 18% above the RNC rate. The ENC rate decreased 38% over the 17-year period, while the RNC rate decreased 44%.

- In 2021 the non-White male rate was the highest but is only 6% higher than the White male rate, is decreasing, and will likely converge soon. The mortality rate for White females is 37% higher than the rate for non-White females and decreased 30% over the period. The rate for non-White females decreased 18%.

- The non-White mortality rate is 12% less than the White rate. Both are decreasing over the 17-year period at about the same pace.

- The 17-year rate trend for racial disparity is unreliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.4 i. Cancer - Trachea, Bronchus, Lung: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
14% decrease
R2 = 0.67
y = -0.53x + 65.45

RNC59 17-yr trendline
26% decrease
R2 = 0.92
y = -0.92x + 60.95

NC 17-yr trendline
22% decrease
R2 = 0.92
y = -0.82x + 62.28

2005 ENC41 rate is 7% greater than RNC59
2021 ENC41 rate is 24% greater than RNC59

Comparison of Fitted Rates in 2005
ENC41: 7% LT, 19% LT, 24% GT, 16% GT
RNC59: 5% LT, 6% LT, 6% GT, 6% GT
NC: ENC41, ENC41, ENC41, ENC41

Comparison of Fitted Rates in 2021
ENC41: 7% LT, 19% LT, 24% GT, 16% GT
RNC59: 5% LT, 6% LT, 6% GT, 6% GT
NC: ENC41, ENC41, ENC41, ENC41
Figure 6.4 ii. Cancer - Trachea, Bronchus, Lung:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
38% decrease
R² = 0.96
y = -1.49x + 66.24

RNC59 17-yr trendline
44% decrease
R² = 0.98
y = -1.58x + 60.95

NC 17-yr trendline
42% decrease
R² = 0.99
y = -1.56x + 62.47

US 17-yr trendline
43% decrease
R² = 0.99
y = -1.40x + 55.17

2005 ENC41 rate is 9% greater than RNC59
2021 ENC41 rate is 18% greater than RNC59

Table: Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
<th>ENC41</th>
</tr>
</thead>
<tbody>
<tr>
<td>9% GT</td>
<td>8% LT</td>
<td>6% LT</td>
<td>17% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>6% GT</td>
<td>2% GT</td>
<td>2% GT</td>
<td>9% LT</td>
<td>RNC59</td>
</tr>
<tr>
<td>20% GT</td>
<td>10% GT</td>
<td>13% GT</td>
<td>US</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

Table: Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
<th>ENC41</th>
</tr>
</thead>
<tbody>
<tr>
<td>16% LT</td>
<td>11% LT</td>
<td>22% LT</td>
<td>ENC41</td>
<td></td>
</tr>
<tr>
<td>13% GT</td>
<td>5% GT</td>
<td>13% LT</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>29% GT</td>
<td>9% GT</td>
<td>15% LT</td>
<td>US</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.4 iii. Cancer - Trachea, Bronchus, Lung:
Figure 6.4 iv. Cancer - Trachea, Bronchus, Lung: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

- NW 17-yr trendline: 37% decrease
 - R² = 0.86
 - y = -1.28x + 59.08

- W 17-yr trendline: 39% decrease
 - R² = 0.94
 - y = -1.56x + 68.65

2005 non-White rate is 14% less than White
2021 non-White rate is 12% less than White
Figure 6.4 v. Cancer - Trachea, Bronchus, Lung:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

\[R^2 = 0.04 \]
\[y = 0.27x - 17.33 \]
Chronic Lower Respiratory Diseases

- The ENC rate trend for CLRD in 2021 is increasing faster than RNC or NC—24% over the 17-year period compared to 9% for NC. The RNC trend is not reliable.

- The age-adjusted rate for 2021 for ENC, RNC and NC are virtually equal. The rate trends are all declining. The trend for ENC is 9% greater than the US rate.

- The age-adjusted rate for White males is the highest. The rates for White males and non-White males are decreasing. The rate for non-White females is lower but shows a 41% increase. The rate for White females is unreliable.

- The White rate has decreased 15% over the 17-year period. The non-White rate is 35% less than the White rate but the trend is unreliable.

- The racial disparity trend has seen a 42% increase over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Figure 6.5 i. Chronic Lower Respiratory Diseases:
Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

- **ENC41 17-yr trendline**
 - 24% increase
 - $R^2 = 0.65$
 - $y = 0.61x + 42.78$

- **RNC59 17-yr trendline**
 - 9% increase
 - $R^2 = 0.04$
 - $y = 0.10x + 48.72$

- **NC 17-yr trendline**
 - 14% GT 10% GT ENC41
 - 9% LT 3% LT ENC41

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>14% GT</td>
<td>10% GT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% LT</td>
<td>3% LT</td>
<td>ENC41</td>
</tr>
</tbody>
</table>

2005 ENC41 rate is 12% less than RNC59
2021 ENC41 rate is 4% greater than RNC59
Figure 6.5 ii. Chronic Lower Respiratory Diseases: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
R2 = 0.49
y = -0.33x + 46.54
12% decrease

RNC59 17-yr trendline
R2 = 0.69
y = -0.61x + 50.79
21% decrease

NC 17-yr trendline
R2 = 0.68
y = -0.53x + 49.59
18% decrease

US 17-yr trendline
R2 = 0.66
y = -0.40x + 44.48
15% decrease

2005 ENC41 rate is 8% less than RNC59
2021 ENC41 rate is 1% greater than RNC59
Figure 6.5 iii. Chronic Lower Respiratory Diseases:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>29% GT</td>
<td>66% LT</td>
<td>7% LT</td>
<td>NWM</td>
<td></td>
</tr>
<tr>
<td>22% LT</td>
<td>73% LT</td>
<td>28% LT</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>192% GT</td>
<td>277% GT</td>
<td>173% GT</td>
<td>NWF</td>
<td></td>
</tr>
<tr>
<td>7% GT</td>
<td>38% GT</td>
<td>63% LT</td>
<td>WF</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% GT</td>
<td>41% LT</td>
<td>10% GT</td>
<td>NWM</td>
<td></td>
</tr>
<tr>
<td>16% LT</td>
<td>51% LT</td>
<td>8% LT</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>71% GT</td>
<td>104% GT</td>
<td>87% GT</td>
<td>NWF</td>
<td></td>
</tr>
<tr>
<td>9% LT</td>
<td>9% GT</td>
<td>47% LT</td>
<td>WF</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.5 iv. Chronic Lower Respiratory Diseases: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

- NW 17-yr trendline
- W 17-yr trendline
- 15% decrease
- R² = 0.08
 \(y = 0.10x + 28.16 \)
- R² = 0.55
 \(y = -0.47x + 53.13 \)

- 2005 non-White rate is 47% less than White
- 2021 non-White rate is 35% less than White
Figure 6.5 v. Chronic Lower Respiratory Diseases:
Measuring disparity in age-adjusted mortality rates by race for ENC41,
1990-2021 with projections to 2030

Racial Disparity
42% increase
R2 = 0.51
y = 2.20x - 88.82
Diabetes Mellitus

- ENC’s diabetes mortality rate is 35% greater than RNC in 2021. The rate for ENC increased 49% over the 17-year period.
- ENC’s age-adjusted rate is flat over the 17-year period but the trend is unreliable. The trends for RNC and NC have increased 20% and 16%. The US rate is also unreliable.
- The rate for non-White males is the highest and is increasing (31% increase over the 17-year period). The White male rate has increased 24%. The non-White female rate has decreased 22%. The White female rate is unreliable.
- The non-White mortality rate trend is unreliable. The White rate has increased 13% over the 17-year period.
- The trend for racial disparity shows a 21% decrease in racial disparity over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.

Figure 6.6 i. Diabetes Mellitus:
Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

2005 ENC41 rate is 42% greater than RNC59
2021 ENC41 rate is 35% greater than RNC59

<table>
<thead>
<tr>
<th>Year</th>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>22</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2021</td>
<td>26</td>
<td>24</td>
<td>23</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>42% GT</td>
<td>29% LT</td>
<td>11% LT</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>42% GT</td>
<td>29% LT</td>
<td>11% LT</td>
</tr>
</tbody>
</table>

ENC41 17-yr trendline
49% increase
R2 = 0.59
y = 0.76x + 26.40

RNC59 17-yr trendline
57% increase
R2 = 0.67
y = 0.62x + 18.62

NC 17-yr trendline
53% increase
R2 = 0.65
y = 0.65x + 20.89
Figure 6.6 ii. Diabetes Mellitus:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline
US 17-yr trendline

20% increase
R2 = 0.06
y = 0.14x + 28.61

16% increase
R2 = 0.26
y = 0.23x + 19.42

13% increase
R2 = 0.19
y = 0.20x + 22.03

9% increase
R2 = 0.00
y = 0.01x + 22.11

Comparison of Fitted Rates in 2005

ENC41 32% LT 23% LT 23% LT ENC41
RNC59 33% LT 13% LT 14% LT RNC59
NC 30% GT 12% LT 0% LT NC
US 29% GT 12% LT 0% LT US

Comparison of Fitted Rates in 2021

ENC41 25% LT 18% LT 28% LT ENC41
RNC59 33% GT 9% GT 4% LT RNC59
NC 22% GT 8% LT 12% LT NC
US 39% GT 4% GT 14% GT US

2005 ENC41 rate is 47% greater than RNC59
2021 ENC41 rate is 33% greater than RNC59
Figure 6.6 iii. Diabetes Mellitus:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

NWM 17-yr trendline
WM 17-yr trendline
NWF 17-yr trendline
WF 17-yr trendline

31% increase
24% increase
22% decrease

R2 = 0.46
R2 = 0.28
R2 = 0.27
R2 = 0.01

y = 0.88x + 48.73
y = 0.35x + 24.22
y = -0.67x + 50.76
y = -0.03x + 17.63

Comparison of Fitted Rates in 2005

Comparison of Fitted Rates in 2021
Figure 6.6 iv. Diabetes Mellitus:
Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

2005 non-White rate is 145% greater than White
2021 non-White rate is 115% greater than White

NW 17-yr trendline
13% increase
R2 = 0.00
y = -0.05x + 50.26

W 17-yr trendline
R2 = 0.15
y = 0.16x + 20.48
Figure 6.6 v. Diabetes Mellitus:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity
21% decrease
$R^2 = 0.31$
$y = -1.80x + 144.23$
Alzheimer’s Disease

- The Alzheimer’s mortality rate for ENC shows a 238% increase over the recent 17-year period. ENC’s rate is 7% less than RNC and 5% less than NC but ENC’s rate of increase was larger than both and they are projected to converge.

- Over the 17-year period the age-adjusted rate for ENC has increased by 123%. The ENC rate is 7% less than the RNC rate and 5% less than NC. ENC has the highest rate increase and is projected to converge with RNC and NC. The ENC rate is 14% greater than US.

- The mortality rates for females, both White and non-White, are greater than for males. Non-White females have the highest rate of increase (178% over 17 years).

- The non-White mortality rate for Alzheimer’s has increased 174% over the 17-year period. In 2021 the non-White rate is 8% greater than the White rate.

- The racial disparity between non-White to White has increase 177% over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.7 i. Alzheimer’s Disease:
Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
238% increase
R2 = 0.90
y = 1.76x + 12.57

RNC59 17-yr trendline
67% increase
R2 = 0.77
y = 1.06x + 26.79

NC 17-yr trendline
94% increase
R2 = 0.85
y = 1.26x + 22.71

2005 ENC41 rate is 53% less than RNC59
2021 ENC41 rate is 7% less than RNC59

Comparison of Fitted Rates in 2005
<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>113% GT</td>
<td>81% GT</td>
<td>ENC41</td>
</tr>
<tr>
<td>53% LT</td>
<td>15% LT</td>
<td>RNC59</td>
</tr>
<tr>
<td>45% LT</td>
<td>18% GT</td>
<td>NC</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021
<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7% GT</td>
<td>5% GT</td>
<td>ENC41</td>
</tr>
<tr>
<td>7% LT</td>
<td>2% LT</td>
<td>RNC59</td>
</tr>
<tr>
<td>5% LT</td>
<td>2% GT</td>
<td>NC</td>
</tr>
</tbody>
</table>
Figure 6.7 ii. Alzheimer’s Disease: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
- 123% increase
- R2 = 0.87
- y = 1.18x + 16.35

RNC59 17-yr trendline
- 36% increase
- R2 = 0.63
- y = 0.61x + 28.40

NC 17-yr trendline
- 52% increase
- R2 = 0.78
- y = 0.76x + 25.14

US 17-yr trendline
- 44% increase
- R2 = 0.76
- y = 0.56x + 21.90

2005 ENC41 rate is 42% less than RNC59
2021 ENC41 rate is 7% less than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>42% GT</td>
<td>74% GT</td>
<td>54% GT</td>
<td>34% GT</td>
</tr>
<tr>
<td>35% LT</td>
<td>13% GT</td>
<td>13% LT</td>
<td></td>
</tr>
<tr>
<td>25% LT</td>
<td>30% GT</td>
<td>15% GT</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>7% LT</td>
<td>8% GT</td>
<td>6% GT</td>
<td>12% LT</td>
</tr>
<tr>
<td>5% LT</td>
<td>2% GT</td>
<td>2% LT</td>
<td></td>
</tr>
<tr>
<td>14% GT</td>
<td>23% GT</td>
<td>21% GT</td>
<td></td>
</tr>
</tbody>
</table>

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Figure 6.7 iii. Alzheimer’s Disease:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%</td>
<td>28%</td>
<td>61%</td>
<td>NWM</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>13%</td>
<td>41%</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>22%</td>
<td>11%</td>
<td>25%</td>
<td>NWF</td>
<td></td>
</tr>
<tr>
<td>38%</td>
<td>29%</td>
<td>20%</td>
<td>WF</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>12%</td>
<td>31%</td>
<td>29%</td>
<td>NWM</td>
<td></td>
</tr>
<tr>
<td>14%</td>
<td>49%</td>
<td>46%</td>
<td>WM</td>
<td></td>
</tr>
<tr>
<td>24%</td>
<td>33%</td>
<td>2%</td>
<td>NWF</td>
<td></td>
</tr>
<tr>
<td>22%</td>
<td>32%</td>
<td>2%</td>
<td>WF</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.7 iv. Alzheimer’s Disease:
Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline
174% increase
R² = 0.88
y = 1.45x + 14.14

W 17-yr trendline
107% increase
R² = 0.84
y = 1.09x + 17.18

2005 non-White rate is 18% less than White
2021 non-White rate is 8% greater than White
Figure 6.7 v. Alzheimer’s Disease:
Measuring disparity in age-adjusted mortality rates by race for ENC41,
1990-2021 with projections to 2030

Racial Disparity
177% increase
R² = 0.51
y = 1.51x - 14.56
Nephritis, Nephrotic Syndrome, and Nephrosis

- The ENC mortality rate trend for nephritis, nephrotic syndrome, and nephrosis is unreliable. The trend for RNC59 has increased 13% over the 17-year period and the NC trend has increased 11%.

- The age-adjusted ENC rate has decreased 24% over the 17-year period and is set to converge with the RNC and NC rates. The ENC rate is 33% greater than the US rate.

- The 17-year trend for non-White females is higher than for White males and females. Non-White females show the greatest decrease, 32% over 17 years. The rate for non-White males is unreliable.

- In 2021 the non-White rate was 122% greater than the White rate and has about the same decrease rate as the White rate over the 17-year period.

- The racial disparity trend is unreliable over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.8 i. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
- 13% increase
- $y = 0.06x + 19.95$
- $R^2 = 0.04$

RNC59 17-yr trendline
- 11% increase
- $y = 0.13x + 17.06$
- $R^2 = 0.37$

NC 17-yr trendline
- 11% increase
- $y = 0.11x + 17.90$
- $R^2 = 0.26$

2005 ENC41 rate is 17% greater than RNC59
2021 ENC41 rate is 9% greater than RNC59

Comparison of Fitted Rates in 2005:
- ENC41: 17% GT, 11% LT
- RNC59: 9% GT, 2% LT
- NC: 7% GT, 2% LT

Comparison of Fitted Rates in 2021:
- ENC41: 17% GT, 5% LT
- RNC59: 9% GT, 2% LT
- NC: 7% GT, 2% LT

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Figure 6.8 ii. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

- ENC41 17-yr trendline: 24% decrease
 - $R^2 = 0.46$
 - $y = -0.30x + 21.65$

- RNC59 17-yr trendline: 10% decrease
 - $R^2 = 0.29$
 - $y = -0.11x + 17.64$

- NC 17-yr trendline: 15% decrease
 - $R^2 = 0.43$
 - $y = -0.16x + 18.77$

- US 17-yr trendline: 17% decrease
 - $R^2 = 0.67$
 - $y = -0.15x + 15.16$

2005 ENC41 rate is 23% greater than RNC59
2021 ENC41 rate is 6% greater than RNC59

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>19% LT</td>
<td>13% LT</td>
<td>30% LT</td>
<td>ENC41</td>
<td>6% LT</td>
<td>4% LT</td>
<td>25% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>23% GT</td>
<td>6% GT</td>
<td>14% GT</td>
<td>RNC59</td>
<td>2% GT</td>
<td>2% GT</td>
<td>20% LT</td>
<td>RNC59</td>
</tr>
<tr>
<td>15% GT</td>
<td>6% LT</td>
<td>19% LT</td>
<td>NC</td>
<td>4% GT</td>
<td>2% LT</td>
<td>22% LT</td>
<td>NC</td>
</tr>
<tr>
<td>43% GT</td>
<td>16% GT</td>
<td>24% GT</td>
<td>US</td>
<td>33% GT</td>
<td>25% GT</td>
<td>27% GT</td>
<td>US</td>
</tr>
</tbody>
</table>
Figure 6.8 iii. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>Race</th>
<th>50% LT</th>
<th>12% LT</th>
<th>65% LT</th>
<th>NWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWM</td>
<td>100% GT</td>
<td>52% GT</td>
<td>29% GT</td>
<td>WM</td>
</tr>
<tr>
<td>WM</td>
<td>18% GT</td>
<td>43% GT</td>
<td>61% GT</td>
<td>NWF</td>
</tr>
<tr>
<td>NWF</td>
<td>8% GT</td>
<td>66% GT</td>
<td>34% GT</td>
<td>WF</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>Race</th>
<th>50% LT</th>
<th>12% LT</th>
<th>65% LT</th>
<th>NWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWM</td>
<td>100% GT</td>
<td>52% GT</td>
<td>29% GT</td>
<td>WM</td>
</tr>
<tr>
<td>WM</td>
<td>18% GT</td>
<td>43% GT</td>
<td>61% GT</td>
<td>NWF</td>
</tr>
<tr>
<td>NWF</td>
<td>8% GT</td>
<td>66% GT</td>
<td>34% GT</td>
<td>WF</td>
</tr>
</tbody>
</table>

NWM 17-yr trendline WM 17-yr trendline NWF 17-yr trendline WF 17-yr trendline

R2 = 0.09 R2 = 0.20 R2 = 0.47 R2 = 0.60

y = -0.33x + 38.95 y = -0.21x + 19.50 y = -0.66x + 34.41 y = -0.23x + 13.56

19% decrease 32% decrease 29% decrease
Figure 6.8 iv. Nephritis, Nephrotic Syndrome, and Nephrosis: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030
Figure 6.8 v. Nephritis, Nephrotic Syndrome, and Nephrosis:
Measuring disparity in age-adjusted mortality rates by race for ENC41,
1990-2021 with projections to 2030

Racial Disparity

R² = 0.00
y = -0.19x + 125.90
Unintentional Motor Vehicle Injuries

- ENC’s unintentional motor vehicle injury mortality rate trend has ticked up in 2021 but the rate trends for ENC, RNC and NC are all unreliable.

- The ENC age-adjusted rate is 48% greater than RNC and 65% greater than the US. The 17-year rate trend for ENC is decreasing, but the trend is unreliable.

- The rates for non-White males and non-White females are increasing. The trends for White males and White females are decreasing. The non-White male rate is the highest.

- The White rate trend has decreased 37% over the 17-year period. The non-White rate has increased 37% over 17 years and is 78% greater than the White rate in 2021.

- Racial disparity has increased significantly over the 17-year period.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.9 i. Unintentional Motor Vehicle Injuries: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline

\[R^2 = 0.07 \]
\[R^2 = 0.06 \]
\[R^2 = 0.08 \]

\[y = -0.15x + 21.72 \]
\[y = -0.09x + 14.77 \]
\[y = -0.11x + 16.79 \]

2005 ENC41 rate is 47% greater than RNC59
2021 ENC41 rate is 44% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>47% GT</td>
<td>32% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>29% GT</td>
<td>12% LT</td>
<td>NC</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>44% GT</td>
<td>31% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>29% GT</td>
<td>12% GT</td>
<td>RNC59</td>
</tr>
<tr>
<td>29% GT</td>
<td>11% LT</td>
<td>NC</td>
</tr>
</tbody>
</table>
Figure 6.9 ii. Unintentional Motor Vehicle Injuries: Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline: 14% decrease
R2 = 0.09
y = -0.16x + 21.63

RNC59 17-yr trendline: 15% decrease
R2 = 0.11
y = -0.12x + 14.86

NC 17-yr trendline: 15% decrease
R2 = 0.12
y = -0.15x + 16.84

US 17-yr trendline: 15% decrease
R2 = 0.18
y = -0.12x + 13.41

2005 ENC41 rate is 46% greater than RNC59
2021 ENC41 rate is 48% greater than RNC59
Figure 6.9 iii. Unintentional Motor Vehicle Injuries:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% LT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>232% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>134% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>48% LT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>94% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>179% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>326% GT</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

NWM 17-yr trendline
25% increase
R2 = 0.11
y = 0.48x + 32.42

WM 17-yr trendline
37% decrease
R2 = 0.53
y = -0.69x + 31.62

NWF 17-yr trendline
50% increase
R2 = 0.28
y = 0.29x + 9.76

WF 17-yr trendline
34% decrease
R2 = 0.43
y = -0.28x + 13.85
Figure 6.9 iv. Unintentional Motor Vehicle Injuries: Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

- NW 17-yr trendline
- W 17-yr trendline

37% increase
37% decrease

$R^2 = 0.22$
$y = 0.43x + 19.78$

$R^2 = 0.54$
$y = -0.49x + 22.78$

2005 non-White rate is 13% less than White
2021 non-White rate is 78% greater than White
Figure 6.9 v. Unintentional Motor Vehicle Injuries: Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity
518% increase
$R^2 = 0.74$
$y = 5.61x - 18.42$
Chronic Liver Disease and Cirrhosis

- The ENC mortality rate for chronic liver disease and cirrhosis has increased 85% over the 17-year period. The ENC rate is 8% greater than the RNC rate and 6% greater than the NC rate, both of which are also increasing.

- The age-adjusted rate for ENC is 9% greater than the RNC rate, 6% greater than the NC rate and 4% greater than the US rate. The ENC rate trend has increased 51% over the 17-year period.

- White males have the highest rate trend and it has increased 40% over the 17-year period. Non-White males are second highest, followed by White females then non-White females. The White female rate has increased the most, 91% over 17 years.

- The White rate trend has increased 56% over the 17-year period. The non-White rate is 29% less than the White rate but has also increased.

- The trend for racial disparity is unreliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 6.10 i. Chronic Liver Disease and Cirrhosis: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

- ENC41 17-yr trendline
 - 85% increase: $y = 0.43x + 8.67$
 - $R^2 = 0.65$

- RNC59 17-yr trendline
 - 95% increase: $y = 0.43x + 7.64$
 - $R^2 = 0.89$

- NC 17-yr trendline
 - 91% increase: $y = 0.42x + 7.96$
 - $R^2 = 0.84$

2005 ENC41 rate is 14% greater than RNC59
2021 ENC41 rate is 8% greater than RNC59
Figure 6.10 ii. Chronic Liver Disease and Cirrhosis:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline: 51% increase
R2 = 0.44
y = 0.26x + 8.71

RNC59 17-yr trendline: 60% increase
R2 = 0.78
y = 0.27x + 7.58

NC 17-yr trendline: 56% increase
R2 = 0.71
y = 0.26x + 7.92

US 17-yr trendline: 60% increase
R2 = 0.81
y = 0.28x + 7.92

2005 ENC41 rate is 15% greater than RNC59
2021 ENC41 rate is 9% greater than RNC59

Comparison of Fitted Rates in 2005
ENC41	RNC59	NC	US
15% GT | 13% LT | 9% LT | 9% LT
10% GT | 4% LT | 4% GT | 4% GT

Comparison of Fitted Rates in 2021
ENC41	RNC59	NC	US
8% LT | 6% LT | 4% LT
9% GT | 2% GT | 4% GT
6% GT | 2% LT | 2% GT
4% GT | 4% LT | 2% LT

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Page 6.57
Figure 6.10 iii. Chronic Liver Disease and Cirrhosis: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

- NWM 17-yr trendline: 31% increase, $y = 0.19x + 10.49$
- WM 17-yr trendline: 40% increase, $y = 0.31x + 13.14$
- NWF 17-yr trendline: 60% increase, $y = 0.16x + 4.63$
- WF 17-yr trendline: 91% increase, $y = 0.30x + 5.68$

Comparison of Fitted Rates in 2005:
- NWM: 25% GT, 56% LT, 46% LT
- WM: 20% LT, 65% LT, 57% LT
- NWF: 127% GT, 184% GT, 23% GT
- WF: 85% GT, 131% GT, 18% LT

Comparison of Fitted Rates in 2021:
- NWM: 33% GT, 47% LT, 22% LT
- WM: 25% LT, 60% LT, 42% LT
- NWF: 88% GT, 150% GT, 46% GT
- WF: 29% GT, 71% GT, 31% LT
Figure 6.10 iv. Chronic Liver Disease and Cirrhosis:
Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

NW 17-yr trendline
43% increase
\[R^2 = 0.23 \]
\[y = 0.18x + 7.16 \]

W 17-yr trendline
56% increase
\[R^2 = 0.46 \]
\[y = 0.31x + 9.22 \]

2005 non-White rate is 22% less than White
2021 non-White rate is 29% less than White
Figure 6.10 v. Chronic Liver Disease and Cirrhosis:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

R² = 0.01
y = -0.48x - 34.19
7. Trends and Disparities in Mortality in ENC41: Cancer - All Sites and HIV Disease; 1990-2021
Cancer - All Sites

- The cancer - all sites mortality rate trend for ENC is greater than NC and has seen a 5% increase over the last 17 years. RNC has decreased by 3% and the trend for NC is unreliable.

- The age-adjusted cancer - all sites mortality rate trends for ENC, RNC, NC and the US are all decreasing at about the same pace. The ENC rate trend is 10% greater than RNC and 11% greater than the US.

- The rate for non-White males has decreased 35% over 17 years and the White male rate has decreased 25%. The non-White female and White female rates are about the same.

- Both White and non-White cancer – all sites mortality rates are decreasing over the 17-year period, although non-White rates are 8% greater than Whites.

- The 17-year trend for racial disparity shows a 52% decrease.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 7.1 i. Cancer - All Sites: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

Mortality rate per 100,000 population

ENC41 17-yr trendline
RNC59 17-yr trendline
NC 17-yr trendline

5% increase
R2 = 0.33
y = 0.62x + 198.58

3% decrease
R2 = 0.26
y = -0.28x + 187.80

2% LT
ENC41 12% LT
RNC59 4% LT
NC

5% LT
ENC41 5% LT
RNC59 4% LT
NC

Comparison of Fitted Rates in 2005

Comparison of Fitted Rates in 2021

2005 ENC41 rate is 6% greater than RNC59
2021 ENC41 rate is 14% greater than RNC59
Figure 7.1 ii. Cancer - All Sites:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US,
1990-2021 with projections to 2030

ENC41 17-yr trendline
23% decrease
R² = 0.91
y = -2.77x + 205.56

RNC59 17-yr trendline
24% decrease
R² = 0.98
y = -2.71x + 189.84

NC 17-yr trendline
24% decrease
R² = 0.97
y = -2.74x + 194.37

US 17-yr trendline
24% decrease
R² = 0.99
y = -2.62x + 187.18
Figure 7.1 iii. Cancer - All Sites:
Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>22%</td>
<td>22%</td>
<td>22%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>49%</td>
<td>49%</td>
<td>49%</td>
<td>49%</td>
<td>49%</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th></th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>22%</td>
<td>22%</td>
<td>22%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>49%</td>
<td>49%</td>
<td>49%</td>
<td>49%</td>
<td>49%</td>
</tr>
</tbody>
</table>

R2 values:

NWM: R2 = 0.88
WM: R2 = 0.94
NWF: R2 = 0.63
WF: R2 = 0.72

Equations:

NWM: y = -6.61x + 317.27
WM: y = -3.67x + 247.08
NWF: y = -1.98x + 174.18
WF: y = -1.81x + 161.82

35% decrease
25% decrease
19% decrease
19% decrease

22% LT
45% LT
49% LT
11% LT
33% LT
37% LT
NWM

28% GT
30% LT
35% LT
12% GT
24% LT
29% LT
WM

82% GT
42% GT
7% LT
48% GT
32% GT
7% LT
NWF

96% GT
53% GT
8% GT
59% GT
42% GT
7% GT
WF

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Figure 7.1 iv. Cancer - All Sites:
Trends in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

- 2005 non-White rate is 15% greater than White
- 2021 non-White rate is 8% greater than White

- NW 17-yr trendline: 27% decrease, \(R^2 = 0.85 \), \(y = -3.60x + 226.65 \)
- W 17-yr trendline: 21% decrease, \(R^2 = 0.90 \), \(y = -2.47x + 196.68 \)
Figure 7.1 v. Cancer - All Sites:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity
52% decrease
R2 = 0.25
y = -0.47x + 15.43
HIV Disease

- The HIV mortality rate for ENC has decreased 77% over the past 17 years but was still 29% higher than RNC in 2021.
- The 17-year age-adjusted rate trend for ENC has been decreasing, but was still 36% greater than RNC and 33% greater than US.
- Non-White males continue to have the highest rate of age-adjusted mortality, but this rate has decreased 82% in a 17-year reliable trend. The rate for White males also decreased 86% and non-White females decreased 82%. A convergence of the non-White and White rate is expected in the future.
- The 17-year non-White age-adjusted HIV mortality rate has decreased by 82% but was 730% greater than White in 2021. The White rate has decreased by 80%. The two rates are projected to converge in the future.
- The racial disparity 17-year trend is not reliable.

Unless otherwise noted, trends are considered reliable if $R^2 \geq 0.35$, moderately reliable if $0.35 > R^2 \geq 0.10$, and unreliable if $R^2 < 0.10$.
Figure 7.2 i. HIV Disease: Trends in mortality rates for ENC41, RNC59, and NC, 1990-2021 with projections to 2030

ENC41 17-yr trendline
77% decrease
R2 = 0.89
y = -0.28x + 6.13

RNC59 17-yr trendline
72% decrease
R2 = 0.88
y = -0.18x + 4.13

NC 17-yr trendline
75% decrease
R2 = 0.93
y = -0.21x + 4.71

2005 ENC41 rate is 49% greater than RNC59
2021 ENC41 rate is 29% greater than RNC59

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>49% GT</td>
<td>33% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>30% GT</td>
<td>14% GT</td>
<td>RNC59</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>ENC41</th>
<th>RNC59</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>29% GT</td>
<td>22% LT</td>
<td>ENC41</td>
</tr>
<tr>
<td>21% GT</td>
<td>7% GT</td>
<td>RNC59</td>
</tr>
<tr>
<td>21% GT</td>
<td>6% LT</td>
<td>NC</td>
</tr>
</tbody>
</table>
Figure 7.2 ii. HIV Disease:
Trends in age-adjusted mortality rates for ENC41, RNC59, NC, and US, 1990-2021 with projections to 2030

ENC41 17-yr trendline
81% decrease
R² = 0.90
y = -0.30x + 6.24

RNC59 17-yr trendline
78% decrease
R² = 0.90
y = -0.18x + 4.03

NC 17-yr trendline
79% decrease
R² = 0.93
y = -0.22x + 4.64

US 17-yr trendline
77% decrease
R² = 0.92
y = -0.18x + 4.00

Comparison of Fitted Rates in 2005
ENC41 RNC59 NC US ENC41 RNC59 NC US
81% LT 35% LT 36% LT 26% LT 81% LT 35% LT
78% LT 55% LT 15% LT 36% LT 78% LT 55% LT

Comparison of Fitted Rates in 2021
ENC41 RNC59 NC US ENC41 RNC59 NC US
2005 ENC41 rate is 55% greater than RNC59
2021 ENC41 rate is 36% greater than RNC59
Figure 7.2 iii. HIV Disease: Trends in age-adjusted mortality rates by race and gender for ENC41, 1990-2021 with projections to 2030

- NWM 17-yr trendline: 82% decrease, R² = 0.89, y = -1.06x + 21.89
- WM 17-yr trendline: 86% decrease, R² = 0.81, y = -0.14x + 2.84
- NWF 17-yr trendline: 82% decrease, R² = 0.69, y = -0.51x + 10.54
- WF 17-yr trendline: 47% decrease, R² = 0.17, y = -0.02x + 0.63

Comparison of Fitted Rates in 2005

<table>
<thead>
<tr>
<th>Race</th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>670%</td>
<td>108%</td>
<td>3370%</td>
<td>87%</td>
</tr>
<tr>
<td>GT</td>
<td>896%</td>
<td>101%</td>
<td>3299%</td>
<td>55%</td>
</tr>
</tbody>
</table>

Comparison of Fitted Rates in 2021

<table>
<thead>
<tr>
<th>Race</th>
<th>NWM</th>
<th>WM</th>
<th>NWF</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>93%</td>
<td>35%</td>
<td>86%</td>
<td>596%</td>
</tr>
<tr>
<td>GT</td>
<td>90%</td>
<td>35%</td>
<td>86%</td>
<td>596%</td>
</tr>
</tbody>
</table>

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Page 7.10
Figure 7.2 iv. HIV Disease:
Trends in age-adjusted mortality rates by race for ENC41,
1990-2021 with projections to 2030

NW 17-yr trendline
82% decrease
R² = 0.87
y = -0.75x + 15.65

W 17-yr trendline
80% decrease
R² = 0.82
y = -0.08x + 1.72

2005 non-White rate is 809% greater than White
2021 non-White rate is 730% greater than White

Report #2.203, March 2024
Health Systems Research and Development, Dept. of Public Health, ECU
Figure 7.2 v. HIV Disease:
Measuring disparity in age-adjusted mortality rates by race for ENC41, 1990-2021 with projections to 2030

Racial Disparity

R² = 0.01
y = 6.43x + 770.21
8. Appendix

<table>
<thead>
<tr>
<th>Diseases of Heart</th>
<th>ICD10 Code</th>
<th>ICD 9 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseases of Heart</td>
<td>I00-I09, I11, I13, I20-I51</td>
<td>390-398, 402, 404, 410-429</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>I60-I69</td>
<td>430-434, 436-438</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>I70</td>
<td>440</td>
</tr>
<tr>
<td>Cancer - All Sites</td>
<td>C00-C97</td>
<td>140-208</td>
</tr>
<tr>
<td>Cancer - Lip, Oral Cavity, Pharynx</td>
<td>C00-C14</td>
<td>140-149</td>
</tr>
<tr>
<td>Cancer - Stomach</td>
<td>C16</td>
<td>151</td>
</tr>
<tr>
<td>Cancer - Colon, Rectum, Anus</td>
<td>C18-C21</td>
<td>153-154</td>
</tr>
<tr>
<td>Cancer - Liver</td>
<td>C22</td>
<td>155</td>
</tr>
<tr>
<td>Cancer - Pancreas</td>
<td>C25</td>
<td>157</td>
</tr>
<tr>
<td>Cancer - Larynx</td>
<td>C32</td>
<td>161</td>
</tr>
<tr>
<td>Cancer - Trachea, Bronchus, Lung</td>
<td>C33-C34</td>
<td>162</td>
</tr>
<tr>
<td>Cancer - Malignant Melanoma of Skin</td>
<td>C43</td>
<td>172</td>
</tr>
<tr>
<td>Cancer - Breast</td>
<td>C50</td>
<td>174-175</td>
</tr>
<tr>
<td>Cancer - Cervix Uteri</td>
<td>C53</td>
<td>180</td>
</tr>
<tr>
<td>Cancer - Ovary</td>
<td>C56</td>
<td>183.0</td>
</tr>
<tr>
<td>Cancer - Prostate</td>
<td>C61</td>
<td>185</td>
</tr>
<tr>
<td>Cancer - Bladder</td>
<td>C67</td>
<td>188</td>
</tr>
<tr>
<td>Cancer - Brain</td>
<td>C71</td>
<td></td>
</tr>
<tr>
<td>Cancer - Non-Hodgkins Lymphoma</td>
<td>C82-C85</td>
<td>200202</td>
</tr>
<tr>
<td>Cancer - Leukemia</td>
<td>C91-C95</td>
<td>204-208</td>
</tr>
<tr>
<td>HIV Disease</td>
<td>B20-B24</td>
<td>042-044</td>
</tr>
<tr>
<td>Septicemia</td>
<td>A40-A41</td>
<td>038</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>E10-E14</td>
<td>250</td>
</tr>
<tr>
<td>Pneumonia and Influenza</td>
<td>J10-J18</td>
<td>480-487</td>
</tr>
<tr>
<td>Chronic Lower Respiratory Diseases</td>
<td>J40-J47</td>
<td>490-494, 496</td>
</tr>
<tr>
<td>Chronic Liver Disease and Cirrhosis</td>
<td>K70, K73-K74</td>
<td>571</td>
</tr>
<tr>
<td>Nephritis, Nephrotic Syndrome, and Nephrosis</td>
<td>N00-N07, N17-N19, N25-N27</td>
<td>580-589</td>
</tr>
<tr>
<td>Unintentional Motor Vehicle Injuries</td>
<td>V02-V04, V09.0, V09.2, V12-V14, V19.0-V19.2, V19.4-V19.6, V20-V79, V80.3-V80.5, V81.0-V81.1, V82.0-V82.1, V83-V86, V87.0-V87.8, V88.0-V88.8, V89.0, V89.2</td>
<td>E810-E825</td>
</tr>
<tr>
<td>All Other Unintentional Injuries and Adverse Effects</td>
<td>V01, V05-V06, V09.1, V09.3-V09.9, V10-V11, V15-V18, V19.3, V19.8-V19.9, V80.0-V80.2, V80.6-V80.9, V81.2-V81.9, V82.2-V82.9, V87.9, V88.9, V89.1, V89.3, V89.9, V90-V99.9, W00-X59, Y85, Y86</td>
<td>E800-E807, E826-E829, E830-E848, E929.0, E929.1, E850-E869, E880-E928, E929.2-E929.9</td>
</tr>
<tr>
<td>Suicide</td>
<td>X60-X84, X87.0</td>
<td>E950-E959</td>
</tr>
<tr>
<td>Homicide</td>
<td>X85-Y09, Y87.1</td>
<td>E960-E969</td>
</tr>
<tr>
<td>Legal Intervention</td>
<td>Y35, Y89.0</td>
<td>E970-E978</td>
</tr>
<tr>
<td>Alzheimers Disease</td>
<td>G30</td>
<td>331.0</td>
</tr>
<tr>
<td>COVID-19</td>
<td>U07.1</td>
<td></td>
</tr>
</tbody>
</table>